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Discrete nonlinear Schralinger equation with defects
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We investigate the dynamical properties of the one-dimensional discrete nonlineadiBgarcequation
(DNLS) with periodic boundary conditions and with an arbitrary distribution of on-site defects. We study the
propagation of a traveling plane wave with momentikinthe dynamics in Fourier space mainly involves two
localized states with momentak (corresponding to a transmitted and a reflected wakéthin a two-mode
ansatz in Fourier space, the dynamics of the system maps on a nonrigid pendulum Hamiltonian. The several
analytically predictedand numerically confirmedegimes include states with a vanishing time average of the
rotational statesimplying complete reflections and refocusing of the incident waescillations around fixed
points (corresponding to quasi-stationary statemd, above a critical value of the nonlinearity, self-trapped
states(with the wave traveling almost undisturbed through the impurltye generalize this treatment to the
case of several traveling waves and time-dependent defects. The validity of the two-mode ansatz and the
continuum limit of the DNLS are discussed.
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I. INTRODUCTION with the coherence of multiple adjacent wells continuously
probed by atomic interference.
The interplay between disorder and nonlinearity is a cen- The condensate wave functi@In(Et) obeys in mean field

tral topic of nonlinear sciencgl]. This raises a number of the Gross-Pitaevskii equatig5]

unsolved mathematical questions, deeply related to the be-

havior of many physical systems, ranging from optical fibers 2

) ; . : . A2 f

and waveguidef2] to polaronic material§3], from biologi- ifi——=— S —V2W+[V+go|V|*]¥, @

cal moleculeq4] to the dynamics of trapped dilute Bose- at 2m

Einstein condensatd$]. In particular, it is highly desirable

to understand how the transport properties of the nonlineafnere the nonlinear coupling termg,=4mh2a/m arises

discrete media are affected by the disorder. Other importantom the interatomic interactiona(is the swave scattering
issues are related to the effect of different kinds of d|sorde[ength andm is the atomic mags The potentialV can be

(which can be parametric or additive, temporal or spgtial
and to the modifications of the Anderson localizatj in
presence of nonlinearity.

In this paper we investigate the dynamical properties o
the discrete nonlinear Schiimger equatioiDNLS) with de- i . .
fects, providing the details of a previously published study When V, is much higher than the condensate chemical

[5], as well as its generalization. We choose to focus on thg(_)tentlal, the system can be m_appeo! onto the DR$16],

DNLS for many reasons. First, it is a simple, highly non-W'th f’/’” the corldensate amg)lltude in tngh well a.md €n

trivial model where disorder, nonlinearity, and discretenes§®J dr[(%/2m)(V ¢y)+ Vel (¢, are wave functions lo-

can by naturally included, and their interplay clearly singledcalized in each well of the periodic potenfialhen defects

out. Second, the continuutttranslationally invariantlimit €, can be created with additional lasers and/or magnetic

of the DNLS, the continuous nonlinear Sctiloger equation fields and can be spatially localized or extended.

(CNLS), is a paradigm of an integrable nonlinear partial de- A different physical system described by the DNLS is

rivatives equatiori7,8]. Last, but not the least, physical sys- given by optical fibers: the typical experimental seftg] is

tems, such as Bose-Einstein condensates in deep optical [agalized with an array of coupled nonlinear waveguides with

tices[9—11] and optical fiber§12—14, are described by the similar optical properties and embedded in a different host

DNLS. material. The waveguides have strong nonlinear susceptibili-
A Bose-Einstein condensatBEC) gas can be confined in ties, whereas the host is a material with a purely linear sus-

a deep optical lattice created by a far-detuned retro-reflectegeptibility. When a low-intensity light is injected in one or a

laser beam. In Ref9] a one-dimensional vertical array al- few neighboring waveguides, it will propagate in the array,

lowed the observation of a coheréptilsed laséroutput and ~ With a spreading of its spatial distribution. The amplituge

of Bloch oscillations. In Ref.11] the Bloch oscillations were of the uth mode in thenth guide obeys the equation

created by accelerating a BEC with a frequency detuning

between the two laser beams varying linearly in time. The W w

direct observation of a Josephson atomic current in a one- S B L. _j dx dy E*.P, 2)

dimensional array of BECs has been reported in [REJ]; ar  4p,

written as the sum of the optical potentiayopt(F)
=V, cog[2mx/\] (\ is the wavelength of the lasers avig is
Proportional to the intensity of the lageaind of any further
external potentiaV/,,; superimposed to the optical array.
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where the axes of the guides are alcmgig‘ is the electric 0 T
field of uth mode in thenth guide,p, is the power in the F A=0 3
uth mode, andP is the polarizatiof17]. For thenth guide, I

Pleo=€nEn+(€g—€n)(Ens1+En_1)

+X(3)(Eﬁ+éﬁ+1+éﬁfl)énv 3

where I?n is the total field in thenth guide, ey (eg) the .
dielectric coefficient of the hosfguide material, andy® i o
the third-order-susceptibility, which is proportional to the g
Kerr coefficient. By substituting Eq3) in Eq. (2) and con- 100 e
sidering only the lowest single mode for each guide, we ob- 10 10 g 10 10
tain the DNLS(4), with the nonlinear coefficienA propor-

tional to the Kerr coefficient, and the on-site potentials FIG. 1. Numerical(black circle$ and analytical(dashed ling
proportional to the effective refractive indices of the indi- oscillation frequencies of the angular momentum as a function of
vidual waveguides. In the low-power limii.e., for small ~ the strengthe of an impurity in absence of nonlineariti= 100,
values ofA), the optical field spreads over the whole array,' :10._ Note the log-log scale. The numerical analysis shows that
while in the opposite limit the output field narrows until it there is no dependence ofon the momentunk=2l/N.

localizes in a few waveguides, creating discrete solitons

[12,13. In Ref.[14] a linearly growing index was considered — —¢,, and ,— oy e'™. We will use periodic boundary
(encn) and the Bloch oscillations have been observed. Theonditions: thus we havek=2#I/N with | integer (

impurities in optical fibers can be induced by differépps- =0, ... N—1).
Slbly raﬂdon) effective refractive indices of the gUideS or When cok<0 the system becomes modu|ati0na”y un-
with varying spatial separations between them. stable[18,19. Stability analysis reveals that the eigenfre-

The plan of the paper is as follows. In Sec. Il we study theguencies of the linear modes become imaginary, driving an
propagation of an initial “discrete” plane wave in the pres- exponential growth of small perturbations. This modulation
ence of a single defect, and we derive the effective nonrigignstability disappears, foA >0, in the CNLS limit.
pendulum Hamiltonian; we also discuss the validity of the | et us consider, then, the case in which kn®. When
two-mode ansatz. In Sec. lll we consider an arbitrary distri-y =0 and the strength of the impurity is not too strofsge
bution of defects and show that even in this case the dynange|ow), the wave is, after some finite time, coherently re-

ics maps onto ainglenonrigid pendulum. We study in turn  flected by the defect. The angular momentum, defined as
the cases of two defects, an extended steplike barrier, a

Gaussian barrier, and a random distribution of defects. We

discuss also the effect of time-dependent defects and the gen-

eralization of the two-mode ansatz to more plane waves. The L(7)=12> ($nh}y:1—C.C), (6)
continuum limit and its difference from the discrete case are "

also discussed. Finally, Sec. IV is devoted to the summary

and to final considerations. oscillates between the initial valuds, and —L,, corre-

. sponding, respectively, to plane waves with wave veétor
Il. THE DISCRETE NONLINEAR SCHRO DINGER and —k. This is crucially different from the continuum case
EQUATION WITH A SINGLE DEFECT where, in general, all wave vectors will enter in the dynamics
(the continuum limit will be discussed in Sec. 1) GVe also
note that the total reflection of the incident wave is the con-
o 1 sequence of_ the periodic boundary c_on_di_tions and the finite
— "= =(Pno1t Uns )+ (ent Al|D) (4) number of sites of the system. In an infinite chah§ ),
ar 2 the initial wave can fully or partially cross tiemall) defect

] ) o (depending on the strength of the nonlinearity, as in the finite
where A is the nonlinear coefficient and=1,... N (N gystem, but it will not be totally reflected.

number of sitep In this section, we consider a single defect = | Fig. 1 we plot the frequency of the oscillations of the
angular momentum; the dashed line is the result of the two-
€n=€0nn (5 mode model(7) in which only momentatk enter the dy-
. namics.

at the siten and study the propagation of a plane wave This approximation can be extended to the case of a finite

y(7=0)=e". In the following we assumeé\>0 (which  nonlinearity, A#0. In Fig. 2 we plot, as an example, the

corresponds to a repulsive interatomic interaction in BECsangular momenturh (normalized to the initial valuk) for

as is the case fot’Rb atoms. However, we note that Eg4) a finite value ofA. The plot of the Fourier transforms @f,

is invariant with respect to the transformation——A, €, at four different times is in Fig. 3: it shows that most part of

The DNLS with defects,, in dimensionless units is
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FIG. 2. Numerical(solid line) and analyticaldashed lingval-
ues of the angular momentufmormalized to the initial valug, vs
time, with e=0.01, N=40, |=4, A/A.=0.5, whereA.=4e/N.
The Fourier transforms at pointg)—(d) are reported in Fig. 3.

FIG. 4. Normalized angular momentum and Fourier transform
f\ at times marked, respectively, as)(c) in a region of param-
eters where the two-mode ansatz breaks down. Her€.5, N
) . =100,1=1, andA=2¢/N.
the Fourier transform is peaked aroundk. Therefore we
introduce a twq—m.ode ansatz for the dynamical evolution okpat the pendulunttwo-mode dynamics is crucially related
the wave function: to discreteness and nonlinearity, and disappears in the con-
tinuum limit. Yet, there is a striking analogy: in both cases
(in the Landau and in the “pendulum” critepiathe phonon
emission out of the incident wavevhich consequently dis-
sipates its energycan be inhibited by an effective energy
barrier. The key difference lies on the corresponding spec-
trum of the emitted phonons, which leads to a completely
different dynamics.
strength smaller than the hopping tere<(1), the momen- To have a quantitative criterion fo_r the validity of the
ST . two-mode ansatt7), we observe that, in the absence of the
tum distributions, peaked arountk, do not overlap. This . o . . .
" . impurities, rotational states with opposite wave vectors
condition preserves the two-mode dynamics through all the ;
. . —k are degenerate. The defects split the degeneracy by cou-
time scales we have been able to explore numerically. The”n the twok. — k waves. similar to the counling brovided
situation changes in th@uasjcontinuum limit. In this case P t%e tunnelir,1 barrier iﬁ 2 double-well o?ent?a? between
phonons can be emitted only with quasimomentum close t ye “left’ and tﬁe “riaht” localized statespTherefore the
k, a condition that allows the applications of the I"':md‘rmrelative opulation ofgthe two waves oscil.lates accorain to
superfluidity criteria(see Ref[20] for a simple derivation of an effecgvep eneralized Josephson Hamiltorj2H Theseg
the Landau critical velocity in the CNDSWe stress, and we Josephson rg imes are rescfrved as lond as tHe splitting in
will show explicitly below at the end of the present section, phs 9 P ) as long PIting
energy induced by the defect, which-se, is smaller than
the energy gap between different rotational states. This con-

Yn(7) = A(7)e""+ B(r)e ", )
We setA,B=1ng(7)e'?28(), z=n,—ng, and ¢=hs
— ¢g. We will compare the numerical solution of E)
with the analytical solution of Eq12) obtained from ansatz

(7).
Let us discuss the validity of Eq47). With an impurity of

! ! dition can be evaluated from Hamiltoni®): the energy of
a plane wavey,=e'X" with k=2ml/N is E,=—N cosk
<« | @ B |« +NA/2 and, puttingk’ =2#(1+1)/N, the minimum energy
) s gap between different plane wavesbgs — Ey~ 2 sink (for
largeN). Therefore we expect that the two-mode ansatz is a
good approximation when2sink=e. In Fig. 4 we plot the
g g normalized angular momentum and the Fourier transform at
three different times in a case in which this condition is not
satisfied, showing the failure of the two-mode ansatz. It is
ol © @ | also obvious from the previous discussion that the two-mode
=~ S~ dynamics will be preserved in the limN—oo, if also |
—oo keepingk=const. (Note that this does not correspond
to the continuous nonlinear Schiinger equation, see Sec.
3 0 kK 2 -2 0k 2’ neG.)

The ansat£7) remains valid even with a time-dependent,
extended, or random distribution of defects, as long as the

FIG. 3. Fourier transfornf, (normalized toN) of the wave
sum of the impurity strengths remains small compared to

function ¢, at times marked, respectively, as)(d) in Fig. 2.
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unity (in our dimensionless units Furthermore, when the We observe that when =0, Eqgs.(12) give

initial wave function is given by the sum of more waves, )

tpn(O):EJAje”‘i“, ansatz(7) can be straightforwardly gen- 5o _(E) 7 (14)
eralized as long as the quasimomentum distributions peaked N/

aroundk; do not overlap. The collision of a soliton with a

single impurity has been studied, from a different perspec:I'he oscillations ofL are sinusoidal, and their frequency is

tive, in Ref.[22]. A numerical analysis of the propagation of given by
plane waves across a segment with defects was made in Ref. €
[23], where a subdiffusive propagation was demonstrated, V=N (15

weakly depending on the nonlinearity.

Let us now come back to the derivation of the equationsthe comparison between numerical results and (Eg) is
of motion for a single defect. We can define an effectiveshown in Fig. 1.

Lagrangian as Equations(12) have been studied in very different con-
texts, including polaron dynamics, where dimer E¢K2)
L’=2 iiﬂnlﬂﬁ —H, (8) had been solved analytical[24], and in the Josephson dy-
n namics of two weakly coupled Bose-Einstein condensates

[21]. Equationg(12) are those of a nonrigid pendulun: is
the angular position arglits conjugate momentum. The non-
1 A rigidity of the pendulum is due to its momentum-dependent
H=2 | = 5 (Indhe st ¥y s 2) + €nl ol >+ 5 | ol length. , o
n The pendulum phase portrait;», has been studied in
9) detail in Ref.[25]. Let us briefly recall the main results. We

both dth e 2N Substitut-  have (@ oscillations around ¢)=0 and(z)=0 (0 states;
i(ngc; a:é;;?) ir? Egr (8)n|v¢\:g| find are conserved Substitu (b) oscillations aroundz)#0 with running phasg ¢)ot

o (self-trapped states (c) oscillations around(z)=0 and
(p)y=m (w state$; (d) oscillations aboufz)#0 and(¢)

where the Hamiltonian of DNLS is

N~ —Nada—Ngdg— ANANg =1 (self-trappedw state$. The ( ...) stands for a time
average.
2¢ — To understand the meaning of these regimes in our sys-
- WV”A”BCOS( da— Pt 2kn), (10 tem, we observe that the angular momentum is proportional
to z Using ansatZ7) in Eq. (6), we get
h h d the relati
where we have used the relation L = 2Nzsink. (16)
E eZikn—q (11  Therefore(z)=0 implies that the wave is completely re-
n

flected, andz(7))>0 (or (z(7))<0) that the wave is only
partially reflected by the impurity. The latter regime is given
by a complete rotation of the pendulum about its center, and
can be considered as a self-trapping of the angular momen-

From Eq.(10), the Euler-Lagrange equations

i£:£ tum. Equivalently, there is an effective energy barrier that
dt g, 99 forbids the complete reflection of the incident wave and pre-
serves its coherence. The observation of a persistent current
for the variational parametets(7) =na g, ®a s give is associated with a superfluid regime of the DNLS equation.
We can derive the critical value for the occurrence of the
S E 1-Zsing (129 transition between the regimes with) =0 (reflection of the
N ' wave and the regimes wittiz) # 0 in the following way. Let
us consider initial valueg(0)=1 and ¢(0)=0: the (con-
. 2e¢ z served initial energy isHy=A/2. We want to find the con-
=N 1 cosg+Az, (12 gition for which z cannot reach the value 0. Siné#(z

=0)=—(2e/N)cos¢p=2e€/N, we find a critical value for the

with the replacemen + 2kn— ¢. The total(conservetien- pendulum oscillations about its center given by

ergy is 4e
A==, (17)

H= Az 2 1-7° 13 N
2 N 2" cosg, (13 whenA <A, zoscillates around 0. WheA=A ., asymp-

totically z(7)—0; and withA> A, (z(7))#0. In Fig. 5 we
and the equgtions of motidr:lz_) can be written in the Hamil-  pjot the normalized angular momentungr)/L, vs time for
tonian formz=—dH/d¢ and ¢=dJH/Jz, with zand ¢ be-  different A/A. in order to illustrate the transition. In Fig. 6
ing canonically conjugate variables. we plot the time average value of the normalized angular
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. FIG. 5. Normalized angular momentut()/Lo vs _tlme for FIG. 7. Normalized angular momentum as a function of time for
dllfferent va!ues ofA/A.=0.5,0.75,1,1.5,25 correspondln.g, respec-AzSdN, #(0)=0, and different values a(0). From Eq.(20),
tively, to points @)—(€) (Ac=4€/N). Parameters in the simulation z./(0)= J3/4. Solid line: numerical results; dashed line: analytical
are€=0.01,N=100,2(0)=1, and¢(0)=0. model. In the numerical simulationg=0.01, N=100, and|

momentum for different values of\/A. and z(0)=1, =10

¢(0)=0. The numerical solutions of Eq4) are in agree-
ment with the two-mode approximatidd2) (dashed ling
For A<A., there is, on average, no transport in the IatticeWith |A|=B| (m is an integer. This corresponds to a time-
For arbitrary initial conditions, the critical value df is independent solutions, > coskn) and to a minimum of en-
. n
given by ergy (13). The fixed point(19) is stable and the oscillations
H[ 6(0).2(0)]=2¢/N. 18 about it are the O states: the small-amplitude oscillations
[£(0).2(0)]=2¢ (18 have frequencyx+y1+A. In Fig. 7 we show the large-

As a further difference from the Landau criteria, we remarkamplitude oscillations, comparing numerical and analytical
that the critical value for self-trappin@nd superfluidityin ~ solutions: we fixA and¢(0)=0, and vary the initial imbal-
the case of a single impurity does depend on the strength éfncez(0). By using the same argument as before, wig)
the defect, but not on the quasimomentkm is smaller than a critical value,(0), we have(z(0))=0.

Let us now study the fixed points of Egel2) and the By approachingz.(0), the oscillations become more and

related physical regimes. By solvingf'mto, ¢=O, we find  more anharmonic, and they go to 0 asymptotically for
z.,(0). For z(0)>2z,(0), the self-trapped regime is re-

b=2mm, (19b)

first : . |
trieved. By using Eq(18), we find
= 1
z=0, (193 2 N 1
L U y 2 4eIN|
T Ze(0)=— 7 (20)
el ( 4eiN )
’ The other fixed points of Eq¢12) are
~ * 2=0, (214
A
v » $p=(2m+1)m, (21b)
, and
’ _ 11 2¢/N -
0 ‘ Z==N+1" 7y (229
0 1 AN, 2 3
’ é=(2m+1)m. (22b)

FIG. 6. Average value of the normalized angular momentum vs ] . . .
the nonlinear coefficienh/A . The filled circles are the numerical The fixed point(21) corresponds to a time-independent so-

solutions of Eq.(4); the dashed line is obtained from Eq42).  lution of Eq.(4) of the formy,=sinkn), and the oscillations
Parameters are the same as in Fig. 5. around it are ther states previously introduced. The oscil-
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FIG. 8. Normalized angular momentum as a function of time for FIG. 9. Phase vs time for the cases of Fig. 8.

A<Ag, A=A, A<A¢, A=A, A>A;. A, andA; are given,
respectively, by Eqs(23) and (24). Solid line: numerical results; [Wherez(t)=2z(0)], and A <Aj [\_Nhere(z)_>z(0)]. In all
dashed line: analytical model. In the numerical simulatioas, the cases,¢)=, and the numerical solutions of E@) are

=0.01,N=100, | =10, ¢(0)=, andz(0)=0.5. compared with our analytical model.

lations around EQq(22) are the self-trappedr states, in IIl. ARBITRARY DISTRIBUTION OF DEFECTS

which the nonrigid pendulum completes oscillations on its ) ) ) )

inverted state. The previous discussion can be generalized to the case of

Let us fixz(0) and¢(0)=, and varyA. By using Eq. Many impurities. The effective Hamiltoniafi3) becomes

(18), we find the following critical value for the nonlinearity: H=(Az%/2)—(2/N)1-2°% ¢, cos(p+2kn), which can be
written as a simple, single nonrigid pendulum Hamiltonian:
A _4e[1—\/1—zz(0)]

c > (239 A 2e —
Nz5(0) HZT—W 1-z°cod ¢+ a), (25

When A<A., z oscillates around 0 ang arounds. For _

A=A., z asymptotically reaches 0, ang reachesnr. with € and a given by the Fourier transform of the defect
Above A ., we have oscillations around a nonzero value: thisdistribution:

means that we are in a superfluid regime with the plane wave

passing through the defects. In this region of parameters, the el = E €. e2ikn (26)
phase difference between the transmitted wave and the re- no

flected one is, on average, equal+#o This system can be

therefore used to tune this phase difference. There are effeEquations(25) and (26) are the main results of this paper.
tively two kinds of these self-trapped states, and they are The critical valueA is given by Eq.(18), with the replace-
separated by the valu&; corresponding to the fixed point ment

(22). We find _
e—€,0(0)— p(0)+ a. (27
A= 2eN (24) | d | f th | |
= Below, we consider applications of these results to severa
120 PP

specific defect forms.
WhenA <A;, zoscillates around a value smaller thg®).

WhenA=A;, we are at the fixed poirg(t)=z(0). When A. Two defects
A> Ay, zoscillates around a value greater ttd0). In all Let us consider, first, the case of two isolated impurities:
these three cases, the average value a§ 7. We remark
that €= 615n;1+ 625n;2- (28
A Z%(0) From Hamiltonian(25), we find the equations of motion for
A_c_ 21— 22(0)[1— y1-7%(0)] ' zand b, which we write in the formwith the replacement
¢+ 2kn;— ¢):

and therefore, since cannot exceed 1, is always;>A..

In Figs. 8 and 9 we plot the angular momentum and the - 2€1 —— = 26 ——
phaseg for A<A. (where(z)=0), A=A (where for large N 1=2"siné N 1=2"sin(¢+A 1o,
times (z)—0), A.<A<A; [where (z)<z(0)], A=A; (299
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FIG. 10. Normalized angular momentum vs time for different  FIG. 11. Normalized angular momentufa) and phasegb) vs
distances of two equal impurities. The different distances are 1, 3time for distances 1 and 11 sited:¢,, differs by 27 and the
4, and 5 sites. SincA ¢,,= (FQ_E)W/S, when the distance is 5 humerical results are almost equal, as explained in the text. The
sites, the corresponding critical value for the transition isSolid line corresponds to the numerical solution, and the dashed line
A¢(Apq,=7)=0 and the system is not transparent to the impuri-to the solution of Egs(29). In (c) and(d), we plotL/L, and ¢/
ties. When the distance is 10 site§(A¢,,=27)=8¢/N. The for distances of 4 and 14. Since the critical value/of is de-
critical value for differentA ¢, is given by Eq.(31), and deter- Creased, as predicted by E@38), we obtain a self-trapped solution,
mines the transmission or nontransmission of the wave. Parametéhlike (a) and (b) where the same values are used with a different

values: €;=¢,=0.005, N=40, 1=2, A/A(A¢,=27)=0.5, distance between the impurities. Parameter values in the simula-
z(0)=1, and¢(0)=0. tions: €;=€,=0.005,N=40, | =2, A/A (A ¢1,=27)=0.5, 2(0)
=1, and¢(0)=0.
. 2¢q 2e; o . . . .
bd=Az+— —_= The critical valueA . is determined in the following way.

z z
—— C0S¢+ ———=coq¢p+A ,
N J1-2 ¢ N J1-2 0180w Let us suppose for simplicity tha{0)=1 and¢(0)=0: the
(290 conserved energy iBl(0)=A/2. In the instant at whiclz
- - — =0, it is H(z=0)=h(¢)/N, where h(¢)=—2¢[cos¢
where A¢1,=2k(n;—ny). € and a of Eq. (26) are ex- | cos@h+Ady,)]. The functionh has a maximum inp,ay,
pressed in terms o&;, €,, and A¢,, by the relationse which is given by
= \€ei+ e5+2€1€,C08A Py, and  tar=e,SinAd,/ (€, .
+ €, COSA ). The effective Hamiltonian is tandmax= — SINA ¢4/ (14 COSA 1),

AZ2 2¢ 2 the critical value for whichz asymptotically reaches 0 is

H=——-— 1—2° cos¢p— %\/1—22 cos p+Adyy). given by
(30

2
A.==h . 31
We see that the spatial distance between the two impurities o= " Pmad 31

enter in the dynamics only through the relative phasg,, o
(mod 2). Now the critical valueA,, and therefore the VW& have a similar formula for the general case e,. In

transparency of the system to the impurities, depends on thfgld- 12, e plotAc vs Ay, by choosing R=7/5 (i.e.,
phase difference. A¢,,=7/5 when the two impurities are in the neighbor

In the casee;=e,=e, it is easily seen that wheA ¢, siteg and show the comparison between the numerical val-

=7, the system is not transparent to the impurities and th&'€S and Eq(31): the system is transparefite., A =0,
plane wave is always transmitted. Similarly, whénp,, ~ Which means that the wave always pagsedien A¢;,
=2, the effective defect is given by, =2e. In Fig. 10, =27 as the two-mode resylEq. (30)] predicts.

we consider the case of two equal impurities: we chddse
=40 sites andl=2, so that X==/5 and A¢,=(n,
—ny)@/5. When the distance between the two impurities is We now_consider an extended, steplike barriey;

5 sites, thenA¢,=m, and we have transparency to the =const forn;<n=n,. Similar to the case of two isolated
impurities. This can be numerically seen by fixiz¢0), impurities, we can choose the length of the step in such a
¢(0), andA, and varying the distance between the impuri-way that the system is not transparent to the defects: e.g.,
ties. In Fig. 11 we plot the dynamical evolution of the angu-with 2k= 77/5, when the length of the barrier is 10 sites, Eq.
lar momentum and phase for two different distances of th€26) vanishes and the system becomes transparent. This is
impurities: the numerical solutions are compared with theillustrated in Fig. 13, where we consider the same initial
solution of Egs.(29). conditiong[ z(0)=1 and¢(0)] and diferent length4. of the

B. Step barrier
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FIG. 14. Angular momentum vs time for different values/of
FIG. 12. Plot of the critical valué\. vs the phase difference in the case of a Gaus_sian bg_rrier with W.idiﬁg and normalized to
Ay, associated with two equal impuritias = e,=e. Numerical e=0_.05. The numerlc_al critical value is 0.002 28, apd the yalue
simulations (solid point3 are with N=40 and =2, so Ay, ob.talned from EQq(35) is 0.002 06. Parameter values in the simu-

=Anz/5 with An the distance between the two impurities. The lations:N=40, 1=2, 2(0)=1, and¢$(0)=0.

dashed line is Eq31), e=0.005,z(0)=1, ¢(0)=0. In the plot,A
is normalized to the critical valud (A ¢1,=0), i.e., with A¢,»
being a multiple of Zr.

we haveX,e,~ [dne,= €. As we discussed in Sec. Il, the
two-mode ansatz7) works if e is much smaller than the
hopping term. Substituting sums with integrals everywhere,
step: when this changes from 1 to 10, the system displays th&y using Eq.(31), we get

“pendulum” transition to superfluidity. 2 2
AZ? 2ee K¢ —
H~—— ———\1—7%cog ¢+ 2kn). (33

C. Gaussian barrier 2 N

Here we consider a Gaussian barrier with widthcen-

1Sl This means that the effect of an extended barrier is equal to
tered on the sita:

that of a single impurity with effective strength

€ €Eoff— Ee_kzo—z. (34)

e~ (n=m?o?, (32)

€En=
o For example, with initial valueg(0)=1 and ¢(0)=0, the

We choose the coefficient in order that by changing the surr(fritical value obtained from Ed17) is

to integrals, which is correct for largé and foroe=1 [26], begis

A N

(35

In Fig. 14 we plot the normalized angular momentum for
different values ofA: the critical value is in reasonable
agreement with Eq(35), and the agreement improves by
increasing the number of sites in the lattice.

It is important to remark that in the present case the criti-
cal value depends on the momentum of the incident plane
wave: whenko>1, thenA,—0. This means that a plane
wave with large momentum will always pass through the
barrier, as expected. In Fig. 15, we compare the critical value
A, numerically found for different wave vectokswith the
analytical prediction(35).

-1

0 time 30000 D. Random distribution of defects

We now consider the case of uniformly distributed ran-
dom defects. All the regimes discussed so far have been
found to be in agreement with full numerical analysis also in

FIG. 13. Plot of the normalized angular momentum vs time for

different lengthsL of the step:e,=const fornsn=n+L—-1. We
considerL=2, 4, 6, 7, and 10 sites. Parameter valués: 40, | )
=2, 2(0)=1, and ¢(0)=0. A is chosen to be &N, wheree this case. o .

=0.01 is the sum of the impurities. Sinck=2 #/5, when the length From Eq.(26) we see that distributions of defects with
of the barrier is 10, the system is transparent to the impurities.  different means, but equal values ©ind «, have the same
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i ) FIG. 17. Angular momentum vs time with a random distribution
FIG. 15. Critical value ofA as a function of the wave vectér ¢ otacts for different values ok/A.=0.45. 0.90. 1.01. 10 100
. . . . A Cc . ) . ] . y ] [
of the |n.C|dent plane wave. Black circles are nurT.\erlcaI. reslultsand 1000(corresponding ta—f), z(0)=1, and¢(0)=0. The sum
dashed line from E(35). Parameter values in the simulatioms: ¢ 10 syrengths of the random impurities is 0.1, and the critical
=100, z(0)=1, and¢(0)=0. The width of the barrier isr=3 value A is given by Eq.(31)
and the sum of the impurities is 0.05. ¢ T

threshold for the occurrence of the superfluid regime. When E. Time-dependent defects

¢(0)=0, the critical value is given by We discuss how to generalize anséfz in the case of a
_ time-dependent defect. First, we consider a single time-
A :4_6 (36) dependent defect at site choosing as an example an oscil-
¢ N’ latory driving:

so it depends only oa. This is explicitly shown in Fig. 16, €n=€COg wt) Sy - (37)
in which we compare\ . from Eq. (36) with the numerical

results obtained using a distribution with all the>0, or all  The effective Hamiltoniari13) becomes

the e,<0, or with zero mean value. In Fig. 17, we plotL

as a function of time for varioud and a random distribution AZ2  2ecoq wt)
of defectse, . The critical valueA ; calculated from Eq(36), H= > TN
as well as the oscillation profiles, are compared with the

numerical findings.

J1-72 CcoS¢, (38

and it describes a nonrigid pendulum with a time-dependent
0.04 ‘ length. Our aim, in the present paper, is not to investigate the
DNLS with such a time-dependent external drive, but rather
to show that the two-mode ansd# and the mapping on the
effective Hamiltonian(38) still give a quantitative account
for the dynamics of the system, leaving a systematic study
for further investigations. In Fig. 18, we compare, for four
different values ofw, the normalized angular momentum
obtained from the numerical solution of the DNLS with the
defect(37), with the results of the analytical model.

[

NA_ /4

0.02

F. Generalization of the two-mode ansatz

We now discuss the case in which we have two plane
waves with initial moment&, andk,. If k; andk, are not
0.04 too close(i.e., if the Fourier transforms do not overjaphe

numerical study of the solutions of the DNLS shows that
. during the dynamics only the wave vectatk; and =k,

FIG. 16. Critical valueA vs € for different random distribu- play a role. In Fig. 19, we show an example of the Fourier
tions of defectsand initial valuesz(0)=1 and #(0)=0]. The  transform at different times. Therefore we can write the wave
solid line is the analytical predictio(86), the black circles are the function as
filled squares, and the stars correspond to the numerical solutions of
the DNLS (4) with an uniform distribution of the random defects  ¢,(7)=A(7)e'* 1"+ B(7)e  *1"+ C(7)e2"+ D (7)e k2",
having, respectively, positive, negative, and zero mean values. (39

.02 -
0 0.0 €
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propagation of a wave with velocity smaller than the sound
velocity (for weak perturbations A simple derivation of the
Landau critical velocity in the CNLS was recently proposed
in Ref.[20], considering an annular geometry with a single
(smal) impurity. Also in this case it is possible to map the
problem of the propagation of a plane wave to a Josephson-
like Hamiltonian. The key point is that the nonlinearity pro-
vides an effective energy barrier against the creation of el-
ementary excitations with momenta+q,k—q (with g
arbitrarily smal), which would dissipate the energy of the
incident wave having momentuka This scenario is qualita-
tively changed from the discrete situation: for the case of the
propagation of a plane wave with a small impurity in a lat-
: > tice, we have shown that the spectrum of the emitted
time 20000 phonons is different, giving a quite different criterion for the
FIG. 18. Normalized angular momentum vs time for a defectSuperfluidity.
€,= € cos(t), and w/A,=0.01, 0.1, 0.5, and Iwith A.=4e/N) To recover the CNLS equatiofin an annular geometyy
corresponding, respectively, to cased-{(d). Solid line is numeri-  from DNLS (4), we write
cal solution; dashed line from analytical model. Parameters:
=0.01,N=40, =4, andA/A,=0.5. _2mg

K2N

-1
0

A similar situation occurs if the initial condition is given by
a discrete Gaussian, whose Fourier transform is very local-

2
ized (say aroundk.). In this case, ansat£39), which in en:V“mL ,
momentum space isfy,=A(7)d(k;—k)+B(7)d(k;+Kk) N2
+C(7)8(k,—k)+D(7)8(ko,+k) (where fy is the Fourier
transform ofy,,), becomes and
fil(1)=A(T)ga(k—ko)+B()gs(k+ko), (40 _ mL?
AN2T

whereg, andgg are the Gaussians, with widtlws, andog

to be determined variationallftogether withA andB). We  ,ith V,=V(x=x,) the defect potential ix,, L the length
will present the result of such a study in a separate paper. of the annulus, and the dimensionless time entering in Eq.
(4). The CNLS is then obtained in the limN—c. In par-
G. The continuum limit ticular, the critical value for the pendulum oscillations, Eq.

In the CNLS, which can be considered as a translationally17), becomes
invariant limit of the DNLS, an argument due to Landaee _ 212 \13
Ref. [20]) implies that a nonlinearity allows a superfluid Ac=VaML/AN"—0. (4D
Therefore, approaching the continuous limit, the DNLS pen-
dulum regime collapses to éstrongly self-trapped state.
This prevents the emission of phonons with opposite mo-
menta with respect to the incident wave, whose energy will
eventually be dissipated on a much longer time scale, ac-
cording to the Landau argument.

(c) 10 (@
\

(b

I

(@ —

0 time 30000 ° 2 0 Kk 2 IV. CONCLUSIONS

In this paper we have studied the dynamical properties of
the DNLS with periodic boundary conditioiannular geom-
10 ® 10 © etry) in the presence of defects. We showed that in the case
of a random distribution of defects, a traveling plane wave
w3 Yy with initial wave vectork splits in momentum space into two

1
0 k

]L A waves with=Kk. This allows for a two-mode ansatz in the
0 o 0 Fourier space, which maps the dynamics onto an effective
-2 0 kK 2 -2 L )
nonrigid (with  momentum dependent lengtlpendulum

FIG. 19. Normalized angular momentum and Fourier transformHam”tonia”-_This Hamiltonian has a very rich dynamical
f, at imes marked, respectively, a&)((c) with two initial waves: ~ phase portrait. For instance, the oscillations of the pendulum
#,(0)= JAeki"+ Cek2", with A=0.8 andC=0.2. Other param- around¢ =0 correspond to states with a vanishing time av-
eters aree=0.01, N=100, |,=6, 1,=15, andA =2¢/N. erage of the angular momentum: the initial traveling wave is

2
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completely reflected and refocused. Above a critical value otlementary excitations with momerka g,k— g (with g be-

nonlineari'ty(n'ot depending on the wave vectdr, the initial ing arbitrarily small, which would dissipate the energy of
angular kinetic energy of the pendulum exceeds the energy,q incident wave having momentumTherefore, unlike the

needed to arrive at the toppEm), and a steady self- qisorete case, the superfluid propagation of a wave depends
sustained pendulum rotation occurs, with nonzero angula(Bn its momentunk

momentum and. a closed-loop trajectory arpund thg pendu— In conclusion, the two-mode ansat?) is valid for an
lum support. This corresponds to a superfluid state, in which ,

the plane wave travels coherently through the randomly disz_irbltrary distribution of defects in a wide range of values of

tributed defects. This scenario is qualitatively different in theparameters, and gives an analytically solvable Hamiltonian

continuum case: a well-known argument suggested by Larm()d.el' Eq.(2_5), which su_ccessfully rgprodqpe_s the full nu-
dau(see Ref[20]) implies that a finite nonlinearity allows a Merical solutions of the discrete nonlinear Sainger equa-
superfluid regime when the traveling speed is smaller thaf{on- A significant subject of future work will be devoted to
the sound velocityfor weak perturbations The nonlinearity the extension of this model to calculate the transmission co-
provides an effective energy barrier against the creation offficients in an open, infinite chain with defects.
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