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Discrete nonlinear Schrödinger equation with defects
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We investigate the dynamical properties of the one-dimensional discrete nonlinear Schro¨dinger equation
~DNLS! with periodic boundary conditions and with an arbitrary distribution of on-site defects. We study the
propagation of a traveling plane wave with momentumk: the dynamics in Fourier space mainly involves two
localized states with momenta6k ~corresponding to a transmitted and a reflected wave!. Within a two-mode
ansatz in Fourier space, the dynamics of the system maps on a nonrigid pendulum Hamiltonian. The several
analytically predicted~and numerically confirmed! regimes include states with a vanishing time average of the
rotational states~implying complete reflections and refocusing of the incident wave!, oscillations around fixed
points ~corresponding to quasi-stationary states!, and, above a critical value of the nonlinearity, self-trapped
states~with the wave traveling almost undisturbed through the impurity!. We generalize this treatment to the
case of several traveling waves and time-dependent defects. The validity of the two-mode ansatz and the
continuum limit of the DNLS are discussed.

DOI: 10.1103/PhysRevE.67.016607 PACS number~s!: 42.25.Bs, 42.65.Tg
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I. INTRODUCTION

The interplay between disorder and nonlinearity is a c
tral topic of nonlinear science@1#. This raises a number o
unsolved mathematical questions, deeply related to the
havior of many physical systems, ranging from optical fib
and waveguides@2# to polaronic materials@3#, from biologi-
cal molecules@4# to the dynamics of trapped dilute Bos
Einstein condensates@5#. In particular, it is highly desirable
to understand how the transport properties of the nonlin
discrete media are affected by the disorder. Other impor
issues are related to the effect of different kinds of disor
~which can be parametric or additive, temporal or spati!,
and to the modifications of the Anderson localization@6# in
presence of nonlinearity.

In this paper we investigate the dynamical properties
the discrete nonlinear Schro¨dinger equation~DNLS! with de-
fects, providing the details of a previously published stu
@5#, as well as its generalization. We choose to focus on
DNLS for many reasons. First, it is a simple, highly no
trivial model where disorder, nonlinearity, and discreten
can by naturally included, and their interplay clearly singl
out. Second, the continuum~translationally invariant! limit
of the DNLS, the continuous nonlinear Schro¨dinger equation
~CNLS!, is a paradigm of an integrable nonlinear partial d
rivatives equation@7,8#. Last, but not the least, physical sy
tems, such as Bose-Einstein condensates in deep optica
tices@9–11# and optical fibers@12–14#, are described by the
DNLS.

A Bose-Einstein condensate~BEC! gas can be confined in
a deep optical lattice created by a far-detuned retro-refle
laser beam. In Ref.@9# a one-dimensional vertical array a
lowed the observation of a coherent~pulsed laser! output and
of Bloch oscillations. In Ref.@11# the Bloch oscillations were
created by accelerating a BEC with a frequency detun
between the two laser beams varying linearly in time. T
direct observation of a Josephson atomic current in a o
dimensional array of BECs has been reported in Ref.@10#;
1063-651X/2003/67~1!/016607~11!/$20.00 67 0166
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with the coherence of multiple adjacent wells continuou
probed by atomic interference.

The condensate wave functionC(rW,t) obeys in mean field
the Gross-Pitaevskii equation@15#

i\
]C

]t
52

\2

2m
¹2C1@V1g0uCu2#C, ~1!

where the nonlinear coupling termg054p\2a/m arises
from the interatomic interaction (a is the s-wave scattering
length andm is the atomic mass!. The potentialV can be
written as the sum of the optical potentialVopt(rW)
5V0 cos2@2px/l# (l is the wavelength of the lasers andV0 is
proportional to the intensity of the laser! and of any further
external potentialVext superimposed to the optical array.

When V0 is much higher than the condensate chemi
potential, the system can be mapped onto the DNLS~4! @16#,
with cn the condensate amplitude in thenth well and en

}*drW@(\2/2m)(¹W fn)21Vextfn
2# (fn are wave functions lo-

calized in each well of the periodic potential!. Then defects
en can be created with additional lasers and/or magn
fields and can be spatially localized or extended.

A different physical system described by the DNLS
given by optical fibers: the typical experimental setup@12# is
realized with an array of coupled nonlinear waveguides w
similar optical properties and embedded in a different h
material. The waveguides have strong nonlinear suscepti
ties, whereas the host is a material with a purely linear s
ceptibility. When a low-intensity light is injected in one or
few neighboring waveguides, it will propagate in the arra
with a spreading of its spatial distribution. The amplitudecn

m

of the mth mode in thenth guide obeys the equation

2 i
]cn

m

]t
5

v

4pm
E dx dy EW n

m
•PW , ~2!
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where the axes of the guides are alongt, EW n
m is the electric

field of mth mode in thenth guide,pm is the power in the
mth mode, andPW is the polarization@17#. For thenth guide,

PW /e05eHEW n1~eG2eH!~EW n111EW n21!

1x (3)~EW n
21EW n11

2 1EW n21
2 !EW n , ~3!

where EW n is the total field in thenth guide, eH (eG) the
dielectric coefficient of the host~guide! material, andx (3)

the third-order-susceptibility, which is proportional to th
Kerr coefficient. By substituting Eq.~3! in Eq. ~2! and con-
sidering only the lowest single mode for each guide, we
tain the DNLS~4!, with the nonlinear coefficientL propor-
tional to the Kerr coefficient, and the on-site potentialsen
proportional to the effective refractive indices of the ind
vidual waveguides. In the low-power limit~i.e., for small
values ofL), the optical field spreads over the whole arra
while in the opposite limit the output field narrows until
localizes in a few waveguides, creating discrete solito
@12,13#. In Ref.@14# a linearly growing index was considere
(en}n) and the Bloch oscillations have been observed. T
impurities in optical fibers can be induced by different~pos-
sibly random! effective refractive indices of the guides o
with varying spatial separations between them.

The plan of the paper is as follows. In Sec. II we study
propagation of an initial ‘‘discrete’’ plane wave in the pre
ence of a single defect, and we derive the effective nonr
pendulum Hamiltonian; we also discuss the validity of t
two-mode ansatz. In Sec. III we consider an arbitrary dis
bution of defects and show that even in this case the dyn
ics maps onto asinglenonrigid pendulum. We study in turn
the cases of two defects, an extended steplike barrie
Gaussian barrier, and a random distribution of defects.
discuss also the effect of time-dependent defects and the
eralization of the two-mode ansatz to more plane waves.
continuum limit and its difference from the discrete case
also discussed. Finally, Sec. IV is devoted to the summ
and to final considerations.

II. THE DISCRETE NONLINEAR SCHRO¨ DINGER
EQUATION WITH A SINGLE DEFECT

The DNLS with defectsen in dimensionless units is

i
]cn

]t
52

1

2
~cn211cn11!1~en1Lucnu2!cn , ~4!

where L is the nonlinear coefficient andn51, . . . ,N (N
number of sites!. In this section, we consider a single defe

en5edn,n̄ ~5!

at the siten̄ and study the propagation of a plane wa
c(t50)5eikn. In the following we assumeL.0 ~which
corresponds to a repulsive interatomic interaction in BE
as is the case for87Rb atoms!. However, we note that Eq.~4!
is invariant with respect to the transformationL→2L, en
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→2en , and cn→cn* eipn. We will use periodic boundary
conditions: thus we havek52p l /N with l integer (l
50, . . . ,N21).

When cosk,0 the system becomes modulationally u
stable @18,19#. Stability analysis reveals that the eigenfr
quencies of the linear modes become imaginary, driving
exponential growth of small perturbations. This modulati
instability disappears, forL.0, in the CNLS limit.

Let us consider, then, the case in which cosk.0. When
L50 and the strength of the impurity is not too strong~see
below!, the wave is, after some finite time, coherently r
flected by the defect. The angular momentum, defined a

L~t!5 i(
n

~cncn11* 2c.c.!, ~6!

oscillates between the initial valuesL0 and 2L0, corre-
sponding, respectively, to plane waves with wave vectok
and2k. This is crucially different from the continuum cas
where, in general, all wave vectors will enter in the dynam
~the continuum limit will be discussed in Sec. III G!. We also
note that the total reflection of the incident wave is the co
sequence of the periodic boundary conditions and the fi
number of sites of the system. In an infinite chain (N→`),
the initial wave can fully or partially cross the~small! defect
~depending on the strength of the nonlinearity, as in the fin
system!, but it will not be totally reflected.

In Fig. 1 we plot the frequencyn of the oscillations of the
angular momentum; the dashed line is the result of the t
mode model~7! in which only momenta6k enter the dy-
namics.

This approximation can be extended to the case of a fi
nonlinearity,LÞ0. In Fig. 2 we plot, as an example, th
angular momentumL ~normalized to the initial valueL0) for
a finite value ofL. The plot of the Fourier transforms ofcn
at four different times is in Fig. 3: it shows that most part

FIG. 1. Numerical~black circles! and analytical~dashed line!
oscillation frequencies of the angular momentum as a function
the strengthe of an impurity in absence of nonlinearity;N5100,
l 510. Note the log-log scale. The numerical analysis shows
there is no dependence ofn on the momentumk52p l /N.
7-2
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the Fourier transform is peaked around6k. Therefore we
introduce a two-mode ansatz for the dynamical evolution
the wave function:

cn~t!5A~t!eikn1B~t!e2 ikn. ~7!

We set A,B5AnA,B(t)eifA,B(t), z5nA2nB , and f5fA
2fB . We will compare the numerical solution of Eq.~4!
with the analytical solution of Eq.~12! obtained from ansatz
~7!.

Let us discuss the validity of Eq.~7!. With an impurity of
strength smaller than the hopping term (e!1), the momen-
tum distributions, peaked around6k, do not overlap. This
condition preserves the two-mode dynamics through all
time scales we have been able to explore numerically.
situation changes in the~quasi!continuum limit. In this case
phonons can be emitted only with quasimomentum close
k, a condition that allows the applications of the Land
superfluidity criteria~see Ref.@20# for a simple derivation of
the Landau critical velocity in the CNLS!. We stress, and we
will show explicitly below at the end of the present sectio

FIG. 2. Numerical~solid line! and analytical~dashed line! val-
ues of the angular momentum~normalized to the initial valueL0, vs
time, with e50.01, N540, l 54, L/Lc50.5, whereLc54e/N.
The Fourier transforms at points (a) –(d) are reported in Fig. 3.

FIG. 3. Fourier transformf k ~normalized toN) of the wave
function cn at times marked, respectively, as (a) –(d) in Fig. 2.
01660
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that the pendulum~two-mode! dynamics is crucially related
to discreteness and nonlinearity, and disappears in the
tinuum limit. Yet, there is a striking analogy: in both cas
~in the Landau and in the ‘‘pendulum’’ criteria!, the phonon
emission out of the incident wave~which consequently dis-
sipates its energy! can be inhibited by an effective energ
barrier. The key difference lies on the corresponding sp
trum of the emitted phonons, which leads to a complet
different dynamics.

To have a quantitative criterion for the validity of th
two-mode ansatz~7!, we observe that, in the absence of t
impurities, rotational states with opposite wave vectorsk,
2k are degenerate. The defects split the degeneracy by
pling the twok,2k waves, similar to the coupling provide
by the tunneling barrier in a double-well potential betwe
the ‘‘left’’ and the ‘‘right’’ localized states. Therefore, the
relative population of the two waves oscillates according
an effective generalized Josephson Hamiltonian@21#. These
Josephson regimes are preserved as long as the splittin
energy induced by the defect, which is;e, is smaller than
the energy gap between different rotational states. This c
dition can be evaluated from Hamiltonian~9!: the energy of
a plane wavecn5eikn with k52p l /N is Ek52N cosk
1NL/2 and, puttingk852p( l 11)/N, the minimum energy
gap between different plane waves isEk82Ek'2p sink ~for
largeN). Therefore we expect that the two-mode ansatz
good approximation when 2p sink*e. In Fig. 4 we plot the
normalized angular momentum and the Fourier transform
three different times in a case in which this condition is n
satisfied, showing the failure of the two-mode ansatz. It
also obvious from the previous discussion that the two-m
dynamics will be preserved in the limitN→`, if also l
→` keepingk5const. ~Note that this does not correspon
to the continuous nonlinear Schro¨dinger equation, see Sec
III G.!

The ansatz~7! remains valid even with a time-dependen
extended, or random distribution of defects, as long as
sum of the impurity strengths remains small compared

FIG. 4. Normalized angular momentum and Fourier transfo
f k at times marked, respectively, as (a) –(c) in a region of param-
eters where the two-mode ansatz breaks down. Heree50.5, N
5100, l 51, andL52e/N.
7-3



s
-
k

a
ec
of
R

te

n
ive

is

-

-
tes

-
ent

e

ys-
nal

-

n
and
en-
at
re-
rrent
on.
he

6
lar
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unity ~in our dimensionless units!. Furthermore, when the
initial wave function is given by the sum of more wave
cn(0)5( jAje

ik jn, ansatz~7! can be straightforwardly gen
eralized as long as the quasimomentum distributions pea
aroundkj do not overlap. The collision of a soliton with
single impurity has been studied, from a different persp
tive, in Ref.@22#. A numerical analysis of the propagation
plane waves across a segment with defects was made in
@23#, where a subdiffusive propagation was demonstra
weakly depending on the nonlinearity.

Let us now come back to the derivation of the equatio
of motion for a single defect. We can define an effect
Lagrangian as

L5(
n

i ċncn* 2H, ~8!

where the Hamiltonian of DNLS is

H5(
n

F2
1

2
~cncn11* 1cn* cn11!1enucnu21

L

2
ucnu4G

~9!

~bothH and the norm(nucnu25N are conserved!. Substitut-
ing ansatz~7! in Eq. ~8!, we find

L
N

52nAḟA2nBḟB2LnAnB

2
2e

N
AnAnBcos~fA2fB12kn̄!, ~10!

where we have used the relation

(
n

e2ikn50. ~11!

From Eq.~10!, the Euler-Lagrange equations

d

dt

]L
]q̇i

5
]L
]qi

for the variational parametersqi(t)5nA,B ,fA,B give

ż52
2e

N
A12z2 sinf, ~12a!

ḟ5
2e

N

z

A12z2
cosf1Lz, ~12b!

with the replacementf12kn̄→f. The total~conserved! en-
ergy is

H5
Lz2

2
2

2e

N
A12z2 cosf, ~13!

and the equations of motion~12! can be written in the Hamil-
tonian formż52]H/]f and ḟ5]H/]z, with z andf be-
ing canonically conjugate variables.
01660
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We observe that whenL50, Eqs.~12! give

z̈52S 2e

N D 2

z. ~14!

The oscillations ofL are sinusoidal, and their frequency
given by

n5
e

pN
. ~15!

The comparison between numerical results and Eq.~15! is
shown in Fig. 1.

Equations~12! have been studied in very different con
texts, including polaron dynamics, where dimer Eqs.~12!
had been solved analytically@24#, and in the Josephson dy
namics of two weakly coupled Bose-Einstein condensa
@21#. Equations~12! are those of a nonrigid pendulum:f is
the angular position andz its conjugate momentum. The non
rigidity of the pendulum is due to its momentum-depend
length.

The pendulum phase portrait,z-f, has been studied in
detail in Ref.@25#. Let us briefly recall the main results. W
have ~a! oscillations around̂f&50 and^z&50 (0 states!;
~b! oscillations around̂ z&Þ0 with running phasê f&}t
~self-trapped states!; ~c! oscillations around^z&50 and
^f&5p (p states!; ~d! oscillations about̂ z&Þ0 and ^f&
5p ~self-trappedp states!. The ^ . . . & stands for a time
average.

To understand the meaning of these regimes in our s
tem, we observe that the angular momentum is proportio
to z. Using ansatz~7! in Eq. ~6!, we get

L52Nzsink. ~16!

Therefore^z&50 implies that the wave is completely re
flected, and̂ z(t)&.0 ~or ^z(t)&,0) that the wave is only
partially reflected by the impurity. The latter regime is give
by a complete rotation of the pendulum about its center,
can be considered as a self-trapping of the angular mom
tum. Equivalently, there is an effective energy barrier th
forbids the complete reflection of the incident wave and p
serves its coherence. The observation of a persistent cu
is associated with a superfluid regime of the DNLS equati

We can derive the critical value for the occurrence of t
transition between the regimes with^z&50 ~reflection of the
wave! and the regimes witĥz&Þ0 in the following way. Let
us consider initial valuesz(0)51 andf(0)50: the ~con-
served! initial energy isH05L/2. We want to find the con-
dition for which z cannot reach the value 0. SinceH(z
50)52(2e/N)cosf<2e/N, we find a critical value for the
pendulum oscillations about its center given by

Lc5
4e

N
, ~17!

whenL,Lc , z oscillates around 0. WhenL5Lc , asymp-
totically z(t)→0; and withL.Lc , ^z(t)&Þ0. In Fig. 5 we
plot the normalized angular momentumL(t)/L0 vs time for
different L/Lc in order to illustrate the transition. In Fig.
we plot the time average value of the normalized angu
7-4
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momentum for different values ofL/Lc and z(0)51,
f(0)50. The numerical solutions of Eq.~4! are in agree-
ment with the two-mode approximation~12! ~dashed line!.
For L,Lc , there is, on average, no transport in the latti

For arbitrary initial conditions, the critical value ofL is
given by

H@f~0!,z~0!#52e/N. ~18!

As a further difference from the Landau criteria, we rema
that the critical value for self-trapping~and superfluidity! in
the case of a single impurity does depend on the strengt
the defect, but not on the quasimomentumk.

Let us now study the fixed points of Eqs.~12! and the
related physical regimes. By solving forż50, ḟ50, we find
first

z50, ~19a!

FIG. 5. Normalized angular momentumL(t)/L0 vs time for
different values ofL/Lc50.5,0.75,1,1.5,25 corresponding, respe
tively, to points (a) –(e) (Lc54e/N). Parameters in the simulatio
aree50.01, N5100, z(0)51, andf(0)50.

FIG. 6. Average value of the normalized angular momentum
the nonlinear coefficientL/Lc . The filled circles are the numerica
solutions of Eq.~4!; the dashed line is obtained from Eqs.~12!.
Parameters are the same as in Fig. 5.
01660
.

k

of

f52mp, ~19b!

with uAu5uBu (m is an integer!. This corresponds to a time
independent solutioncn}cos(kn) and to a minimum of en-
ergy ~13!. The fixed point~19! is stable and the oscillation
about it are the 0 states: the small-amplitude oscillatio
have frequency}A11L. In Fig. 7 we show the large
amplitude oscillations, comparing numerical and analyti
solutions: we fixL andf(0)50, and vary the initial imbal-
ancez(0). By using the same argument as before, whenz(0)
is smaller than a critical valuezcr(0), we have^z(0)&50.
By approachingzcr(0), the oscillations become more an
more anharmonic, and they go to 0 asymptotically
zcr(0). For z(0).zcr(0), the self-trapped regime is re
trieved. By using Eq.~18!, we find

zcr
2 ~0!5

2S L

4e/ND21

S L

4e/ND 2 . ~20!

The other fixed points of Eqs.~12! are

z50, ~21a!

f5~2m11!p, ~21b!

and

z56A12
2e/N

L
, ~22a!

f5~2m11!p. ~22b!

The fixed point~21! corresponds to a time-independent s
lution of Eq.~4! of the formcn}sin(kn), and the oscillations
around it are thep states previously introduced. The osc

-

s

FIG. 7. Normalized angular momentum as a function of time
L58e/N, f(0)50, and different values ofz(0). From Eq.~20!,
zcr(0)5A3/4. Solid line: numerical results; dashed line: analytic
model. In the numerical simulations,e50.01, N5100, and l
510.
7-5
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lations around Eq.~22! are the self-trappedp states, in
which the nonrigid pendulum completes oscillations on
inverted state.

Let us fix z(0) andf(0)5p, and varyL. By using Eq.
~18!, we find the following critical value for the nonlinearity

Lc5
4e@12A12z2~0!#

Nz2~0!
. ~23!

When L,Lc , z oscillates around 0 andf aroundp. For
L5Lc , z asymptotically reaches 0, andf reachesp.
AboveLc , we have oscillations around a nonzero value: t
means that we are in a superfluid regime with the plane w
passing through the defects. In this region of parameters
phase difference between the transmitted wave and the
flected one is, on average, equal top. This system can be
therefore used to tune this phase difference. There are e
tively two kinds of these self-trappedp states, and they ar
separated by the valueL f corresponding to the fixed poin
~22!. We find

L f5
2e/N

A12z2~0!
. ~24!

WhenL,L f , z oscillates around a value smaller thanz(0).
When L5L f , we are at the fixed pointz(t)5z(0). When
L.L f , z oscillates around a value greater thanz(0). In all
these three cases, the average value off is p. We remark
that

L f

Lc
5

z2~0!

2A12z2~0!@12A12z2~0!#
,

and therefore, sincez cannot exceed 1, is alwaysL f.Lc .
In Figs. 8 and 9 we plot the angular momentum and

phasef for L,Lc ~where^z&50), L5Lc ~where for large
times ^z&→0), Lc,L,L f @where ^z&,z(0)], L5L f

FIG. 8. Normalized angular momentum as a function of time
L,Lc , L5Lc , L,L f , L5L f , L.L f . Lc andL f are given,
respectively, by Eqs.~23! and ~24!. Solid line: numerical results
dashed line: analytical model. In the numerical simulationse
50.01, N5100, l 510, f(0)5p, andz(0)50.5.
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@where z(t)5z(0)], and L,L f @where ^z&.z(0)]. In all
the cases,̂f&5p, and the numerical solutions of Eq.~4! are
compared with our analytical model.

III. ARBITRARY DISTRIBUTION OF DEFECTS

The previous discussion can be generalized to the cas
many impurities. The effective Hamiltonian~13! becomes
H5(Lz2/2)2(2/N)A12z2(nen cos(f12kn), which can be
written as a simple, single nonrigid pendulum Hamiltonia

H5
Lz2

2
2

2ē

N
A12z2 cos~f1a!, ~25!

with ē and a given by the Fourier transform of the defe
distribution:

ēeia5(
n

ene2ikn. ~26!

Equations~25! and ~26! are the main results of this pape
The critical valueLc is given by Eq.~18!, with the replace-
ment

e→ ē;f~0!→f~0!1a. ~27!

Below, we consider applications of these results to sev
specific defect forms.

A. Two defects

Let us consider, first, the case of two isolated impuritie

en5e1dn,n̄1
1e2dn,n̄2

. ~28!

From Hamiltonian~25!, we find the equations of motion fo
z andf, which we write in the form~with the replacement
f12kn̄1→f):

ż52
2e1

N
A12z2 sinf2

2e2

N
A12z2 sin~f1Df12!,

~29a!

r FIG. 9. Phase vs time for the cases of Fig. 8.
7-6
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ḟ5Lz1
2e1

N

z

A12z2
cosf1

2e2

N

z

A12z2
cos~f1Df12!,

~29b!

where Df1252k(n̄22n̄1). ē and a of Eq. ~26! are ex-
pressed in terms ofe1 , e2, and Df12 by the relationsē
5Ae1

21e2
212e1e2 cosDf12, and tana5e2sinDf12/(e1

1e2 cosDf12). The effective Hamiltonian is

H5
Lz2

2
2

2e1

N
A12z2 cosf2

2e2

N
A12z2 cos~f1Df12!.

~30!

We see that the spatial distance between the two impur
enter in the dynamics only through the relative phaseDf12
(mod 2p). Now the critical valueLc , and therefore the
transparency of the system to the impurities, depends on
phase difference.

In the casee15e2[e, it is easily seen that whenDf12
5p, the system is not transparent to the impurities and
plane wave is always transmitted. Similarly, whenDf12
52p, the effective defect is given byee f f52e. In Fig. 10,
we consider the case of two equal impurities: we choosN

540 sites andl 52, so that 2k5p/5 and Df125(n̄2

2n̄1)p/5. When the distance between the two impurities
5 sites, thenDf125p, and we have transparency to th
impurities. This can be numerically seen by fixingz(0),
f(0), andL, and varying the distance between the impu
ties. In Fig. 11 we plot the dynamical evolution of the ang
lar momentum and phase for two different distances of
impurities: the numerical solutions are compared with
solution of Eqs.~29!.

FIG. 10. Normalized angular momentum vs time for differe
distances of two equal impurities. The different distances are 1

4, and 5 sites. SinceDf125(n̄22n̄1)p/5, when the distance is 5
sites, the corresponding critical value for the transition
Lc(Df125p)50 and the system is not transparent to the impu
ties. When the distance is 10 sites,L(Df1252p)58e/N. The
critical value for differentDf12 is given by Eq.~31!, and deter-
mines the transmission or nontransmission of the wave. Param
values: e15e250.005, N540, l 52, L/Lc(Df1252p)50.5,
z(0)51, andf(0)50.
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The critical valueLc is determined in the following way
Let us suppose for simplicity thatz(0)51 andf(0)50: the
conserved energy isH(0)5L/2. In the instant at whichz
50, it is H(z50)[h(f)/N, where h(f)522e@cosf
1cos(f1Df12)#. The functionh has a maximum infmax,
which is given by

tanfmax52sinDf12/~11cosDf12!,

the critical value for whichz asymptotically reaches 0 i
given by

Lc5
2

N
h~fmax!. ~31!

We have a similar formula for the general casee1Þe2. In
Fig. 12, we plotLc vs Df12 by choosing 2k5p/5 ~i.e.,
Df125p/5 when the two impurities are in the neighb
sites! and show the comparison between the numerical v
ues and Eq.~31!: the system is transparent~i.e., Lc50,
which means that the wave always passes! when Df12
52p, as the two-mode result@Eq. ~30!# predicts.

B. Step barrier

We now consider an extended, steplike barrier:en

5const for n̄1<n<n̄2. Similar to the case of two isolate
impurities, we can choose the length of the step in suc
way that the system is not transparent to the defects: e
with 2k5p/5, when the length of the barrier is 10 sites, E
~26! vanishes and the system becomes transparent. Th
illustrated in Fig. 13, where we consider the same init
conditions@z(0)51 andf(0)] and different lengthsL of the

t
3,

-

ter

FIG. 11. Normalized angular momentum(a) and phase(b) vs
time for distances 1 and 11 sites:Df12 differs by 2p and the
numerical results are almost equal, as explained in the text.
solid line corresponds to the numerical solution, and the dashed
to the solution of Eqs.~29!. In (c) and (d), we plot L/L0 andf/p
for distances of 4 and 14. Since the critical value ofLc is de-
creased, as predicted by Eq.~18!, we obtain a self-trapped solution
unlike (a) and (b) where the same values are used with a differ
distance between the impurities. Parameter values in the sim
tions: e15e250.005, N540, l 52, L/Lc(Df1252p)50.5, z(0)
51, andf(0)50.
7-7
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step: when this changes from 1 to 10, the system displays
‘‘pendulum’’ transition to superfluidity.

C. Gaussian barrier

Here we consider a Gaussian barrier with widths cen-
tered on the siten̄:

en5
e

Aps
e2(n2n̄)2/s2

. ~32!

We choose the coefficient in order that by changing the s
to integrals, which is correct for largeN and fors*1 @26#,

FIG. 12. Plot of the critical valueLc vs the phase difference
Df12 associated with two equal impuritiese15e2[e. Numerical
simulations ~solid points! are with N540 and l 52, so Df12

5Dnp/5 with Dn the distance between the two impurities. T
dashed line is Eq.~31!, e50.005,z(0)51, f(0)50. In the plot,L
is normalized to the critical valueLc(Df1250), i.e., with Df12

being a multiple of 2p.

FIG. 13. Plot of the normalized angular momentum vs time

different lengthsL of the step:en5const forn̄<n<n̄1L21. We
considerL52, 4, 6, 7, and 10 sites. Parameter values:N540, l
52, z(0)51, andf(0)50. L is chosen to be 2e/N, where e
50.01 is the sum of the impurities. Since 2k5p/5, when the length
of the barrier is 10, the system is transparent to the impurities.
01660
he

m

we have(nen'*dnen5e. As we discussed in Sec. II, th
two-mode ansatz~7! works if e is much smaller than the
hopping term. Substituting sums with integrals everywhe
by using Eq.~31!, we get

H'
Lz2

2
2

2ee2k2s2

N
A12z2 cos~f12kn̄!. ~33!

This means that the effect of an extended barrier is equa
that of a single impurity with effective strength

ee f f5ee2k2s2
. ~34!

For example, with initial valuesz(0)51 andf(0)50, the
critical value obtained from Eq.~17! is

Lc5
4ee f f

N
. ~35!

In Fig. 14 we plot the normalized angular momentum f
different values ofL: the critical value is in reasonabl
agreement with Eq.~35!, and the agreement improves b
increasing the number of sites in the lattice.

It is important to remark that in the present case the cr
cal value depends on the momentum of the incident pl
wave: whenks@1, thenLc→0. This means that a plan
wave with large momentum will always pass through t
barrier, as expected. In Fig. 15, we compare the critical va
Lc , numerically found for different wave vectorsk, with the
analytical prediction~35!.

D. Random distribution of defects

We now consider the case of uniformly distributed ra
dom defects. All the regimes discussed so far have b
found to be in agreement with full numerical analysis also
this case.

From Eq. ~26! we see that distributions of defects wit
different means, but equal values ofē anda, have the same

r

FIG. 14. Angular momentum vs time for different values ofL
in the case of a Gaussian barrier with widths53 and normalized to
e50.05. The numerical critical value is 0.002 28, and the va
obtained from Eq.~35! is 0.002 06. Parameter values in the sim
lations:N540, l 52, z(0)51, andf(0)50.
7-8
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threshold for the occurrence of the superfluid regime. Wh
f(0)50, the critical value is given by

Lc5
4ē

N
, ~36!

so it depends only onē. This is explicitly shown in Fig. 16,
in which we compareLc from Eq. ~36! with the numerical
results obtained using a distribution with all theen.0, or all
theen,0, or with zero mean value. In Fig. 17, we plotL/L0
as a function of time for variousL and a random distribution
of defectsen . The critical valueLc calculated from Eq.~36!,
as well as the oscillation profiles, are compared with
numerical findings.

FIG. 15. Critical value ofL as a function of the wave vectork
of the incident plane wave. Black circles are numerical resu
dashed line from Eq.~35!. Parameter values in the simulations:N
5100, z(0)51, andf(0)50. The width of the barrier iss53
and the sum of the impurities is 0.05.

FIG. 16. Critical valueLc vs ē for different random distribu-
tions of defects@and initial valuesz(0)51 and f(0)50]. The
solid line is the analytical prediction~36!, the black circles are the
filled squares, and the stars correspond to the numerical solutio
the DNLS ~4! with an uniform distribution of the random defec
having, respectively, positive, negative, and zero mean values.
01660
n

e

E. Time-dependent defects

We discuss how to generalize ansatz~7! in the case of a
time-dependent defect. First, we consider a single tim
dependent defect at siten̄, choosing as an example an osc
latory driving:

en5e cos~vt !dn,n̄ . ~37!

The effective Hamiltonian~13! becomes

H5
Lz2

2
2

2e cos~vt !

N
A12z2 cosf, ~38!

and it describes a nonrigid pendulum with a time-depend
length. Our aim, in the present paper, is not to investigate
DNLS with such a time-dependent external drive, but rat
to show that the two-mode ansatz~7! and the mapping on the
effective Hamiltonian~38! still give a quantitative accoun
for the dynamics of the system, leaving a systematic st
for further investigations. In Fig. 18, we compare, for fo
different values ofv, the normalized angular momentum
obtained from the numerical solution of the DNLS with th
defect~37!, with the results of the analytical model.

F. Generalization of the two-mode ansatz

We now discuss the case in which we have two pla
waves with initial momentak1 andk1. If k1 andk2 are not
too close~i.e., if the Fourier transforms do not overlap!, the
numerical study of the solutions of the DNLS shows th
during the dynamics only the wave vectors6k1 and 6k2
play a role. In Fig. 19, we show an example of the Four
transform at different times. Therefore we can write the wa
function as

cn~t!5A~t!eik1n1B~t!e2 ik1n1C~t!eik2n1D~t!e2 ik2n.
~39!

;

of

FIG. 17. Angular momentum vs time with a random distributi
of defects for different values ofL/Lc50.45, 0.90, 1.01, 10,100
and 1000~corresponding toa–f ), z(0)51, andf(0)50. The sum
of the strengths of the random impurities is 0.1, and the criti
valueLc is given by Eq.~31!.
7-9



y
ca

r.

al

id

nd

ed
le
e
on-

o-
el-

e

the
t-

ted
e

q.

q.

n-
.

o-
will
ac-

of

ase
ve
o
e
tive

al
lum
v-
is

ec

:

rm

TROMBETTONI, SMERZI, AND BISHOP PHYSICAL REVIEW E67, 016607 ~2003!
A similar situation occurs if the initial condition is given b
a discrete Gaussian, whose Fourier transform is very lo
ized ~say aroundkc). In this case, ansatz~39!, which in
momentum space isf k5A(t)d(k12k)1B(t)d(k11k)
1C(t)d(k22k)1D(t)d(k21k) ~where f k is the Fourier
transform ofcn), becomes

f k~t!5A~t!gA~k2kc!1B~t!gB~k1kc!, ~40!

wheregA andgB are the Gaussians, with widthssA andsB
to be determined variationally~together withA andB). We
will present the result of such a study in a separate pape

G. The continuum limit

In the CNLS, which can be considered as a translation
invariant limit of the DNLS, an argument due to Landau~see
Ref. @20#! implies that a nonlinearity allows a superflu

FIG. 18. Normalized angular momentum vs time for a def
en5e cos(vt), andv/Lc50.01, 0.1, 0.5, and 1~with Lc54e/N)
corresponding, respectively, to cases (a) –(d). Solid line is numeri-
cal solution; dashed line from analytical model. Parameterse
50.01, N540, l 54, andL/Lc50.5.

FIG. 19. Normalized angular momentum and Fourier transfo
f k at times marked, respectively, as (a) –(c) with two initial waves:
cn(0)5AAeik1n1ACeik2n, with A50.8 andC50.2. Other param-
eters aree50.01, N5100, l 156, l 2515, andL52e/N.
01660
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propagation of a wave with velocity smaller than the sou
velocity ~for weak perturbations!. A simple derivation of the
Landau critical velocity in the CNLS was recently propos
in Ref. @20#, considering an annular geometry with a sing
~small! impurity. Also in this case it is possible to map th
problem of the propagation of a plane wave to a Josephs
like Hamiltonian. The key point is that the nonlinearity pr
vides an effective energy barrier against the creation of
ementary excitations with momentak1q,k2q ~with q
arbitrarily small!, which would dissipate the energy of th
incident wave having momentumk. This scenario is qualita-
tively changed from the discrete situation: for the case of
propagation of a plane wave with a small impurity in a la
tice, we have shown that the spectrum of the emit
phonons is different, giving a quite different criterion for th
superfluidity.

To recover the CNLS equation~in an annular geometry!
from DNLS ~4!, we write

L5
2mg0

\2N
,

en5
VnmL2

\N2
,

and

t5
mL2

\N2t
,

with Vn[V(x5xn) the defect potential inxn , L the length
of the annulus, andt the dimensionless time entering in E
~4!. The CNLS is then obtained in the limitN→`. In par-
ticular, the critical value for the pendulum oscillations, E
~17!, becomes

Lc5VnmL2/\N3→0. ~41!

Therefore, approaching the continuous limit, the DNLS pe
dulum regime collapses to a~strongly! self-trapped state
This prevents the emission of phonons with opposite m
menta with respect to the incident wave, whose energy
eventually be dissipated on a much longer time scale,
cording to the Landau argument.

IV. CONCLUSIONS

In this paper we have studied the dynamical properties
the DNLS with periodic boundary conditions~annular geom-
etry! in the presence of defects. We showed that in the c
of a random distribution of defects, a traveling plane wa
with initial wave vectork splits in momentum space into tw
waves with6k. This allows for a two-mode ansatz in th
Fourier space, which maps the dynamics onto an effec
nonrigid ~with momentum dependent length! pendulum
Hamiltonian. This Hamiltonian has a very rich dynamic
phase portrait. For instance, the oscillations of the pendu
aroundf50 correspond to states with a vanishing time a
erage of the angular momentum: the initial traveling wave

t
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completely reflected and refocused. Above a critical value
nonlinearity~not depending on the wave vectork), the initial
angular kinetic energy of the pendulum exceeds the ene
needed to arrive at the top (f5p), and a steady self
sustained pendulum rotation occurs, with nonzero ang
momentum and a closed-loop trajectory around the pen
lum support. This corresponds to a superfluid state, in wh
the plane wave travels coherently through the randomly
tributed defects. This scenario is qualitatively different in t
continuum case: a well-known argument suggested by L
dau~see Ref.@20#! implies that a finite nonlinearity allows
superfluid regime when the traveling speed is smaller t
the sound velocity~for weak perturbations!. The nonlinearity
provides an effective energy barrier against the creation
o
,

tt

ou

a-
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elementary excitations with momentak1q,k2q ~with q be-
ing arbitrarily small!, which would dissipate the energy o
the incident wave having momentumk. Therefore, unlike the
discrete case, the superfluid propagation of a wave depe
on its momentumk.

In conclusion, the two-mode ansatz~7! is valid for an
arbitrary distribution of defects in a wide range of values
parameters, and gives an analytically solvable Hamilton
model, Eq.~25!, which successfully reproduces the full nu
merical solutions of the discrete nonlinear Schro¨dinger equa-
tion. A significant subject of future work will be devoted t
the extension of this model to calculate the transmission
efficients in an open, infinite chain with defects.
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